High-energy effective action from scattering of QCD shock waves

Ian Balitsky
JLab & ODU

Sinaia, 29 June 05

High-energy scattering as a collision of shock waves

A typical hadron-hadron collision viewed from the c.m. frame has the form of scattering of two shock waves. Regge limit: $E \gg$ everything else

High-energy scattering as a collision of shock waves

A typical hadron-hadron collision viewed from the c.m. frame has the form of scattering of two shock waves.

■ Big Q: Produced particles/fields ⇔ S_{eff}?

High-energy scattering as a collision of shock waves

A typical hadron-hadron collision viewed from the c.m. frame has the form of scattering of two shock waves.

- Q # 0: What is a scattering of two QCD shock waves?
- Big Q: Produced particles/fields ⇔ S_{eff}?

Rapidity factorization

At first, we integrate over "red" gluons moving with rapidities in the central region $\eta \sim \eta_{\rm c.m.}$.

They interact with the "external" fileds (to be integrated over later) with rapidities $\eta \sim \eta_A$ and $\eta \sim \eta_B$

Rapidity factorization

Fast-moving (blue) fileds shrink into a pancake $A_+ \sim \delta(x_-)$

Fast-moving (blue) fileds shrink into a pancake $A_+ \sim \delta(x_-)$ Interaction with the shock wave is instantaneous \Rightarrow no time to deviate in transverse plane

Fast-moving (blue) fileds shrink into a pancake $A_+ \sim \delta(x_-)$ Interaction with the shock wave is instantaneous

- ⇒ no time to deviate in transverse plane
- ⇒ the interaction is described by the *Wilson line*

$$V_z = [\infty p_2 + z_\perp, -\infty p_2 + z_\perp], \quad [x, y] \equiv P e^{ig \int_0^1 du (x - y)^\mu A_\mu (ux + (1 - u)y)}$$

Fast-moving (blue) fileds shrink into a pancake $A_+ \sim \delta(x_-)$

Interaction with the shock wave is instantaneous

- ⇒ no time to deviate in transverse plane
- ⇒ the interaction is described by the *Wilson line*

$$V_z = [\infty p_2 + z_\perp, -\infty p_2 + z_\perp], \quad [x, y] \equiv P e^{ig \int_0^1 du (x - y)^\mu A_\mu (ux + (1 - u)y)}$$

Propagator in the shock-wave background = (free propagator)

 \times (instantaneous interaction with the shock wave \sim V) \times (free propagator)-

Covariant vs axial gauge

Covariant gauges: the shock wave is a pancake: $A_+ \sim \delta(x_-)$, $A_- = A_i = 0$.

Covariant vs axial gauge

Covariant gauges: the shock wave is a pancake: $A_+ \sim \delta(x_-)$, $A_- = A_i = 0$. Axial (temporal) gauges: the shock wave is a piece-wise pure gauge

$$A^{i} = \mathcal{V}_{1}^{i}(z_{\perp})\theta(z_{+}) + \mathcal{V}_{2}^{i}(z_{\perp})\theta(-z_{+}), \quad A_{+} = A_{-} = 0, \quad \mathcal{V}_{i} \equiv V^{\dagger} \frac{\imath}{g} \partial_{i} V$$

$$G(x,y) = \int\! dz V_1^\dagger(x_\perp) \frac{1}{(x-z)^2} V_1(z_\perp) \delta(z_\perp) V_2^\dagger(z_\perp) \frac{1}{(z-y)^2} V_2(y_\perp)$$

Covariant vs axial gauge

Covariant gauges: the shock wave is a pancake: $A_+ \sim \delta(x_-)$, $A_- = A_i = 0$. Axial (temporal) gauges: the shock wave is a piece-wise pure gauge

$$A^{i} = \mathcal{V}_{1}^{i}(z_{\perp})\theta(z_{+}) + \mathcal{V}_{2}^{i}(z_{\perp})\theta(-z_{+}), \quad A_{+} = A_{-} = 0, \quad \mathcal{V}_{i} \equiv V^{\dagger} \frac{\imath}{g} \partial_{i} V$$

$$G(x,y) = \int dz V_1^{\dagger}(x_{\perp}) \frac{1}{(x-z)^2} V_1(z_{\perp}) \delta(z_{\perp}) V_2^{\dagger}(z_{\perp}) \frac{1}{(z-y)^2} V_2(y_{\perp})$$

The source for such a field is

$$\exp\{i\int d^2z_{\perp}\{\mathcal{V}_1^i(z_{\perp})-\mathcal{V}_2^i(z_{\perp})\}(0,F_{-i},0)_z\}$$

$$(0, F_{-i}, 0)_z \equiv \int du[z_{\perp}, up_1 + z_{\perp}] F_{-i}(up_1 + z_{\perp})[up_1 + z_{\perp}, z_{\perp}]$$

Second shock wave

Consider now the propagation of the red gluon in the background of green gluons with greater rapidity

Second shock wave

Covariant gauges:

Second shock wave

Axial gauges:

The source is

$$\exp\{i \int d^2 z_{\perp} (\mathcal{U}_1^i - \mathcal{U}_2^i)(z_{\perp})(0, F_{+i}, 0)_z\}$$

$$[0, F_{+i}, 0] \equiv \int du[z_{\perp}, up_2 + z_{\perp}] F_{+i}(up_2 + z_{\perp}) [up_2 + z_{\perp}, z_{\perp}]$$

= $[0, \infty p_2]_z i \frac{\partial}{\partial z_i} [\infty p_2, 0]_z + [0, -\infty p_2]_z i \frac{\partial}{\partial z_i} [-\infty p_2, 0]_z$

Scattering of two shock waves

Gluons in the central region of rapidity move in the "external" fields of two shock waves

In the axial gauges

Scattering of two shock waves

Gluons in the central region of rapidity move in the "external" fields of two shock waves

In the axial gauges

Integration over A fields gives the effective action

$$e^{iS_{\text{eff}}(U_i, V_i, \Delta \eta)} = \int DA e^{iS_{\text{QCD}}(A) + i \int d^2 z_{\perp} \{ (\mathcal{V}_1^i - \mathcal{V}_2^i)_z (\mathbf{0}, F_{-i}, \mathbf{0})_z + (\mathcal{U}_1^i - \mathcal{U}_2^i)_z [\mathbf{0}, F_{+i}, \mathbf{0}]_z \}}$$

Rapidity ⇔ slope of the Wilson line

$$\Delta \eta = \eta_1 - \eta_2$$

$$e^{iS_{\text{eff}}(U_i, V_i, \Delta \eta)} = \int DA e^{iS_{\text{QCD}}(A) + i \int d^2 z_{\perp} \{ (V_1^i - V_2^i)_z (\mathbf{0}, F_{-i}, \mathbf{0})_z + (U_1^i - U_2^i)_z [\mathbf{0}, F_{+i}, \mathbf{0}]_z \}}$$

$$(0, F_{-i}, 0)_z = (0, \infty n_1)_z i \partial_i (\infty n_1, 0)_z + (0, -\infty n_1)_z i \partial_i (-\infty n_1, 0)_z,$$

$$[0, F_{-i}, 0]_z = [0, \infty n_2]_z i \partial_i [\infty n_2, 0]_z + [0, -\infty n_2]_z i \partial_i [-\infty n_2, 0]_z$$

 S_{eff} gives the small-x evolution of the Wilson-line operators

BASIC IDEA: $\alpha_s = \alpha_s(Q_s) \ll 1 \Rightarrow$ SEMICLASSICS IS RELEVANT

McLerran & Venugopalan

BASIC IDEA: $\alpha_s = \alpha_s(Q_s) \ll 1 \Rightarrow$ SEMICLASSICS IS RELEVANT

McLerran & Venugopalan

$$D^{\mu}F_{\mu\nu} = \frac{\partial}{\partial A_{\mu}}(\text{sources})$$

BASIC IDEA:
$$\alpha_s = \alpha_s(Q_s) \ll 1 \Rightarrow$$
 SEMICLASSICS IS RELEVANT

McLerran & Venugopalan

$$D^{\mu}F_{\mu\nu} = \frac{\partial}{\partial A_{\mu}}(\text{sources})$$

Two methods of the solution on the market:

Numerical simulations.

Venugopalan & Krasnitz

Perturbative expansion in strength of one of the shock waves

McLerran et al, Kovchegov & Mueller

BASIC IDEA: $\alpha_s = \alpha_s(Q_s) \ll 1 \Rightarrow$ SEMICLASSICS IS RELEVANT

McLerran & Venugopalan

$$D^{\mu}F_{\mu\nu} = \frac{\partial}{\partial A_{\mu}}(\text{sources})$$

Two methods of the solution on the market:

Numerical simulations.

Venugopalan & Krasnitz

Perturbative expansion in strength of one of the shock waves

McLerran et al, Kovchegov & Mueller

 \Leftrightarrow expansion in powers of commutators [U,V] (calculated up to $[U,V]^2$)

If
$$[U, V] = 0$$

$$\bar{A}_{+} = \bar{A}_{-} = 0, \quad \bar{A}^{i} = \mathcal{U}_{1}^{i}\theta(x_{+}) + \mathcal{U}_{2}^{i}\theta(-x_{+}) + \mathcal{V}_{1}^{i}\theta(x_{-}) + \mathcal{V}_{2}^{i}\theta(-x_{-})$$

= piece-wise pure gauge .

QED-like: no interaction \Rightarrow no particle production

If
$$[U, V] = 0$$

$$\bar{A}_{+} = \bar{A}_{-} = 0, \quad \bar{A}^{i} = \mathcal{U}_{1}^{i}\theta(x_{+}) + \mathcal{U}_{2}^{i}\theta(-x_{+}) + \mathcal{V}_{1}^{i}\theta(x_{-}) + \mathcal{V}_{2}^{i}\theta(-x_{-})$$

= piece-wise pure gauge .

QED-like: no interaction \Rightarrow no particle production

If $[U, V] \neq 0$ one can take this ansatz

$$\bar{A}_{+}^{(0)} = \bar{A}_{-}^{(0)} = 0, \quad \bar{A}^{i(0)} = \mathcal{U}_{1}^{i}\theta(x_{+}) + \mathcal{U}_{2}^{i}\theta(-x_{+}) + \mathcal{V}_{1}^{i}\theta(x_{-}) + \mathcal{V}_{2}^{i}\theta(-x_{-})$$

as a trial configuration for the classical solution and improve it order by order in [U,V] by calculating Feynman diagrams in the background of the trial configuration.

Linear term (source) for the trial configuration

$$T_{\mu} = -D_{k}^{(0)}([\mathcal{U}_{\mu\perp}^{1}, \mathcal{V}_{1}^{k}] - \mu \leftrightarrow k)\theta(z_{+})\theta(z_{-}) + 3 \text{ similar terms}$$

$$\bar{A}_{\mu} = \mathcal{U}_{1\mu}^{\perp}\theta(x_{+}) + \mathcal{U}_{2\mu}^{\perp}\theta(-x_{+}) + \mathcal{V}_{1\mu}^{\perp}\theta(x_{-}) + \mathcal{V}_{2\mu}^{\perp}\theta(-x_{-}) + Q_{\mu}$$

Linear term (source) for the trial configuration

$$T_{\mu} = -D_{k}^{(0)}([\mathcal{U}_{\mu\perp}^{1}, \mathcal{V}_{1}^{k}] - \mu \leftrightarrow k)\theta(z_{+})\theta(z_{-}) + 3 \text{ similar terms}$$
$$\bar{A}_{\mu} = \mathcal{U}_{1\mu}^{\perp}\theta(x_{+}) + \mathcal{U}_{2\mu}^{\perp}\theta(-x_{+}) + \mathcal{V}_{1\mu}^{\perp}\theta(x_{-}) + \mathcal{V}_{2\mu}^{\perp}\theta(-x_{-}) + Q_{\mu}$$

Solve the YM eqn for $Q_{\mu}(x)$ by iterations \Leftrightarrow calculate Feynman diagrams in the external field $\bar{A}^{(0)}$

1/2-order approximation: a piece-wise pure gauge field

$$\bar{A}_{+} = \bar{A}_{-} = 0
\bar{A}^{i} = \mathcal{W}_{F}^{i} \theta(x_{+}) \theta(x_{-}) + \mathcal{W}_{L}^{i} \theta(-x_{+}) \theta(x_{-})
+ \mathcal{W}_{R}^{i} \theta(x_{+}) \theta(-x_{-}) + \mathcal{W}_{R}^{i} \theta(-x_{+}) \theta(-x_{-})$$

$$\mathcal{W}_F^i(x_\perp) = \mathcal{U}_1^i + \mathcal{V}_1^i + E_F^i = \text{pure gauge}$$

$$\mathcal{W}_L^i(x_\perp) = \mathcal{U}_2^i + \mathcal{V}_1^i + E_L^i = \dots$$

$$\mathcal{W}_R^i(x_\perp) = \mathcal{U}_1^i + \mathcal{V}_2^i + E_R^i = \dots$$

$$\mathcal{W}_B^i(x_\perp) = \mathcal{U}_2^i + \mathcal{V}_2^i + E_B^i = \dots$$

In the first order

$$E_i^a(x_{\perp}) = ig \int d^2z (U_x U_z^{\dagger} + V_x V_z^{\dagger} - 1)^{ab} \frac{(x - z)_{\perp}^k}{2\pi^2 (x - z)_{\perp}^2} ([\mathcal{U}_i, \mathcal{V}_k]_z - i \leftrightarrow k)^b$$

bF gauge
$$D^{\mu}Q_{\mu}=0 \rightarrow (i\partial_i+g[\mathcal{U}_i+\mathcal{V}_i,)E^i=0$$

$$Q_{(1)\mu}^{\mathcal{W}_{F}}(k) \equiv W_{F}Q_{(1)\mu}^{\mathcal{W}_{F}}W_{F}^{\dagger} = \frac{1}{k^{2}} \left\{ 2\frac{p_{1\mu}}{k_{-}} [\mathcal{V}_{1i} - \mathcal{V}_{2i}, E_{R}^{i} - E_{B}^{i}] + 2\frac{p_{2\mu}}{k_{+}} [\mathcal{U}_{1i} - \mathcal{U}_{2i}, E_{L}^{i} - E_{B}^{i}] + 2E_{\mu}^{\perp} \right\}$$

$$E^{i} \equiv E_{F}^{i} - E_{L}^{i} - E_{R}^{i} + E_{B}^{i} = \mathcal{W}_{F}^{i} - \mathcal{W}_{L}^{i} - \mathcal{W}_{R}^{i} + \mathcal{W}_{B}^{i}$$

Check: bF gauge condition $(i\partial^{\mu} + g[\mathcal{W}_{F}^{\mu},)Q_{\mu} = 0$

$$Q_{(1)\mu}^{W_F}(k) \equiv W_F Q_{(1)\mu}^{W_F} W_F^{\dagger} = \frac{1}{k^2} \left\{ 2 \frac{p_{1\mu}}{k_-} [\mathcal{V}_{1i} - \mathcal{V}_{2i}, E_R^i - E_B^i] + 2 \frac{p_{2\mu}}{k_+} [\mathcal{U}_{1i} - \mathcal{U}_{2i}, E_L^i - E_B^i] + 2 E_{\mu}^{\perp} \right\}$$

$$E^i \equiv E_F^i - E_L^i - E_R^i + E_B^i = \mathcal{W}_F^i - \mathcal{W}_L^i - \mathcal{W}_R^i + \mathcal{W}_B^i$$

Check: bF gauge condition $(i\partial^{\mu} + g[\mathcal{W}_{F}^{\mu},)Q_{\mu} = 0$

Lipatov vertex (effective vertex of gluon emission):

$$L_{\mu}^{(1)}(k) = k^{2} Q_{(1)\mu}^{W_{F}}(k) \Big|_{k^{2}=0} =$$

$$2E_{\perp}^{\mu} + 2\frac{p_{1}^{\mu}}{k_{-}} [\mathcal{V}_{1i} - \mathcal{V}_{2i}, E_{R}^{i} - E_{2}^{i}] + 2\frac{p_{2}^{\mu}}{k_{+}} [\mathcal{U}_{1i} - \mathcal{U}_{2i}, E_{L}^{i} - E_{2}^{i}]$$

Effective action = product of two Lipatov vertices. In the $[U,V]^2$ order

$$L^a_\mu L^{a\mu} = 4E^i_a E^{ai}$$

Shortcut to the effective action

The trial configuration:

$$A_{-}=A_{+}=0 \text{ and }$$

$$A_{i} = \theta(x_{+})\theta(x_{-})\mathcal{W}_{Fi} + \theta(x_{+})\theta(-x_{+})\mathcal{W}_{R}$$
$$+ \theta(-x_{+})\theta(x_{-})\mathcal{W}_{Li} + \theta(-x_{+})\theta(-x_{-})\mathcal{W}_{E}$$

In each of the four quadrants of the space the field is a pure gauge

$$\mathcal{W}_{Fi} = \mathcal{U}_{1i} + \mathcal{V}_{1i} + E_{Fi}$$

$$\mathcal{W}_{Li} = \mathcal{U}_{2i} + \mathcal{V}_{1i} + E_{Li}$$

$$\mathcal{W}_{Ri} = \mathcal{U}_{1i} + \mathcal{V}_{2i} + E_{Ri}$$

$$\mathcal{W}_{Bi} = \mathcal{U}_{2i} + \mathcal{V}_{2i} + E_{Fi}$$

Shortcut to the effective action

The trial configuration:

$$A_- = A_+ = 0$$
 and
$$A_- = A(m_-)A(m_-)M_- + A(m_-)A(m_-)$$

$$A_{i} = \theta(x_{+})\theta(x_{-})\mathcal{W}_{Fi} + \theta(x_{+})\theta(-x_{+})\mathcal{W}_{R}$$
$$+ \theta(-x_{+})\theta(x_{-})\mathcal{W}_{Li} + \theta(-x_{+})\theta(-x_{-})\mathcal{W}_{E}$$

In each of the four quadrants of the space the field is a pure gauge

$$\mathcal{W}_{Fi} = \mathcal{U}_{1i} + \mathcal{V}_{1i} + E_{Fi}$$
 $\mathcal{W}_{Li} = \mathcal{U}_{2i} + \mathcal{V}_{1i} + E_{Li}$
 $\mathcal{W}_{Ri} = \mathcal{U}_{1i} + \mathcal{V}_{2i} + E_{Ri}$
 $\mathcal{W}_{Bi} = \mathcal{U}_{2i} + \mathcal{V}_{2i} + E_{Fi}$

$$T_i = 2\delta(x_+)\delta(x_-)E_i \implies$$

$$S_{\text{eff}} = \int dz dz' T_i^a(z) T^{ai}(z') \simeq \alpha_s \Delta \eta \int d^2 z_\perp E_i^a(z_\perp) E^{ai}(z_\perp)$$

Gauge-invariant form of the effective action

$$S_{\text{eff}}(V_1, V_2, U_1, U_2; \Delta \eta) =$$

$$(\mathcal{V}_1 - \mathcal{V}_2)^{ai} (\mathcal{U}_1 - \mathcal{U}_2)_i^a + \frac{\alpha_s \Delta \eta}{4} L_i^a L^{ai}$$

$$L_i^a = 2(\mathcal{W}_F - \mathcal{W}_L - \mathcal{W}_R + \mathcal{W}_B)_i^a$$
$$= 2(E_F - E_L - E_R + E_B)_i^a$$

Gauge-invariant form of the effective action

$$S_{\text{eff}}(V_1, V_2, U_1, U_2; \Delta \eta) =$$

$$(\mathcal{V}_1 - \mathcal{V}_2)^{ai} (\mathcal{U}_1 - \mathcal{U}_2)_i^a + \frac{\alpha_s \Delta \eta}{4} L_i^a L^{ai}$$

$$L_i^a = 2(\mathcal{W}_F - \mathcal{W}_L - \mathcal{W}_R + \mathcal{W}_B)_i^a$$

= $2(E_F - E_L - E_R + E_B)_i^a$

Gauge invariant representation (HIMST):

$$\frac{1}{4}L^{ai}L_{i}^{a} = \text{tr}[\infty p_{1}, F_{-i}, -\infty p_{1}]_{\infty p_{2}}[\infty p_{2}, F_{+i}, -\infty p_{2}]_{\infty p_{1}} \\
\times [\infty p_{1}, -\infty p_{1}]_{-\infty p_{2}}[-\infty p_{2}, \infty p_{2}]_{-\infty p_{1}} + \text{cyclic perm.}$$

$$[\infty p_1, F_{-i}, -\infty p_1] \equiv \int_{-\infty}^{\infty} du [\infty p_1, u p_1] F_{-i}(u p_1) [u p_1, -\infty p_1]$$

Gauge-invariant form of the effective action

$$S_{\text{eff}}(V_1, V_2, U_1, U_2; \Delta \eta) =$$

$$(\mathcal{V}_1 - \mathcal{V}_2)^{ai} (\mathcal{U}_1 - \mathcal{U}_2)_i^a + \frac{\alpha_s \Delta \eta}{4} L_i^a L^{ai}$$

$$L_i^a = 2(\mathcal{W}_F - \mathcal{W}_L - \mathcal{W}_R + \mathcal{W}_B)_i^a$$

= $2(E_F - E_L - E_R + E_B)_i^a$

Gauge invariant representation (HIMST):

$$\frac{1}{4}L^{ai}L_{i}^{a} = \text{tr}[\infty p_{1}, F_{-i}, -\infty p_{1}]_{\infty p_{2}}[\infty p_{2}, F_{+i}, -\infty p_{2}]_{\infty p_{1}}
\times [\infty p_{1}, -\infty p_{1}]_{-\infty p_{2}}[-\infty p_{2}, \infty p_{2}]_{-\infty p_{1}} + \text{cyclic perm.}$$

$$[\infty p_1, F_{-i}, -\infty p_1] \equiv \int_{-\infty}^{\infty} du [\infty p_1, u p_1] F_{-i}(u p_1) [u p_1, -\infty p_1]$$

Functional integral over the Wilson-line variables

Functional integral over the Wilson-line variables

$$e^{iS_{\text{eff}}(U_{1},U_{2},V_{1},V_{2};\eta_{1}-\eta_{2})} = \int_{U_{1x}} DU_{1x}^{\eta} DU_{2x}^{\eta} DV_{1x}^{\eta} DV_{2x}^{\eta} e^{i\int d^{2}x_{\perp} [(\mathcal{V}_{1}-\mathcal{V}_{2})_{i}^{a}(\mathcal{U}_{1}^{\eta_{1}}-\mathcal{U}_{2}^{\eta_{1}})^{ai} + \int_{\eta_{2}}^{\eta_{1}} d\eta \mathcal{L}(U_{1},U_{2},V_{1},V_{2},\eta)]} e^{i\int d^{2}x_{\perp} [(\mathcal{V}_{1}-\mathcal{V}_{2})_{i}^{a}(\mathcal{U}_{1}^{\eta_{1}}-\mathcal{U}_{2}^{\eta_{1}})^{ai} + \int_{\eta_{2}}^{\eta_{1}} d\eta \mathcal{L}(U_{1},U_{2},V_{1},V_{2},\eta)]}$$

$$\mathcal{L}(U_k, V_k, \eta) = -(\mathcal{V}_1^{\eta} - \mathcal{V}_2^{\eta})_i^a \frac{\partial}{\partial \eta} (\mathcal{U}_1^{\eta} - \mathcal{U}_2^{\eta})^{ai} - i \frac{\alpha_s}{4} L_i^a(U, V) L^{ai}(U, V)] \right\}$$

 L_i is local in terms of W's but unfortunately non-local in terms of U and V.

This formula contains both "upside down" and "bottom up" small-x "fan" evolutions \Rightarrow pomeron loops

Conclusions

- High-energy hadron-hadron scattering

 collision of two QCD shock waves (Color Glass Condensates?)
- For two nuclei, A and B, the expansion in commutators of Wilson lines is a symmetric expansion in both $\frac{B}{A}$ or $\frac{A}{B}$ parameters.
- $\mathcal{L}(U,V) \ni \text{ pomeron loops } (\Rightarrow \text{ unitarity?})$

Conclusions

- High-energy hadron-hadron scattering

 collision of two QCD shock waves (Color Glass Condensates?)
- For two nuclei, A and B, the expansion in commutators of Wilson lines is a symmetric expansion in both $\frac{B}{A}$ or $\frac{A}{B}$ parameters.
- $\mathcal{L}(U,V) \ni \text{ pomeron loops } (\Rightarrow \text{ unitarity?})$

Outlook

- The $[U,V]^2$ term in $\mathcal L$
- Big Q: What is the field produced by the collision (in all orders in [U, V])?
- ullet \Leftrightarrow Big Q: S_{eff} in (in all orders in [U,V]) ?